\(\int \frac {\sin ^2(a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx\) [88]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 77 \[ \int \frac {\sin ^2(a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx=-\frac {3 E\left (\left .a-\frac {\pi }{4}+b x\right |2\right )}{10 b}+\frac {\sin ^2(a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}-\frac {3 \cos (2 a+2 b x)}{10 b \sqrt {\sin (2 a+2 b x)}} \]

[Out]

3/10*(sin(a+1/4*Pi+b*x)^2)^(1/2)/sin(a+1/4*Pi+b*x)*EllipticE(cos(a+1/4*Pi+b*x),2^(1/2))/b+1/5*sin(b*x+a)^2/b/s
in(2*b*x+2*a)^(5/2)-3/10*cos(2*b*x+2*a)/b/sin(2*b*x+2*a)^(1/2)

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {4381, 2716, 2719} \[ \int \frac {\sin ^2(a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx=\frac {\sin ^2(a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}-\frac {3 E\left (\left .a+b x-\frac {\pi }{4}\right |2\right )}{10 b}-\frac {3 \cos (2 a+2 b x)}{10 b \sqrt {\sin (2 a+2 b x)}} \]

[In]

Int[Sin[a + b*x]^2/Sin[2*a + 2*b*x]^(7/2),x]

[Out]

(-3*EllipticE[a - Pi/4 + b*x, 2])/(10*b) + Sin[a + b*x]^2/(5*b*Sin[2*a + 2*b*x]^(5/2)) - (3*Cos[2*a + 2*b*x])/
(10*b*Sqrt[Sin[2*a + 2*b*x]])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 4381

Int[((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(-(e*Sin[a +
b*x])^m)*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(p + 1))), x] + Dist[e^2*((m + 2*p + 2)/(4*g^2*(p + 1))), Int[(e*Sin
[a + b*x])^(m - 2)*(g*Sin[c + d*x])^(p + 2), x], x] /; FreeQ[{a, b, c, d, e, g}, x] && EqQ[b*c - a*d, 0] && Eq
Q[d/b, 2] &&  !IntegerQ[p] && GtQ[m, 1] && LtQ[p, -1] && NeQ[m + 2*p + 2, 0] && (LtQ[p, -2] || EqQ[m, 2]) && I
ntegersQ[2*m, 2*p]

Rubi steps \begin{align*} \text {integral}& = \frac {\sin ^2(a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}+\frac {3}{10} \int \frac {1}{\sin ^{\frac {3}{2}}(2 a+2 b x)} \, dx \\ & = \frac {\sin ^2(a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}-\frac {3 \cos (2 a+2 b x)}{10 b \sqrt {\sin (2 a+2 b x)}}-\frac {3}{10} \int \sqrt {\sin (2 a+2 b x)} \, dx \\ & = -\frac {3 E\left (\left .a-\frac {\pi }{4}+b x\right |2\right )}{10 b}+\frac {\sin ^2(a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}-\frac {3 \cos (2 a+2 b x)}{10 b \sqrt {\sin (2 a+2 b x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.18 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.86 \[ \int \frac {\sin ^2(a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx=-\frac {12 E\left (\left .a-\frac {\pi }{4}+b x\right |2\right )+\frac {4 (1+6 \cos (2 (a+b x))+3 \cos (4 (a+b x))) \sin ^2(a+b x)}{\sin ^{\frac {5}{2}}(2 (a+b x))}}{40 b} \]

[In]

Integrate[Sin[a + b*x]^2/Sin[2*a + 2*b*x]^(7/2),x]

[Out]

-1/40*(12*EllipticE[a - Pi/4 + b*x, 2] + (4*(1 + 6*Cos[2*(a + b*x)] + 3*Cos[4*(a + b*x)])*Sin[a + b*x]^2)/Sin[
2*(a + b*x)]^(5/2))/b

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(226\) vs. \(2(92)=184\).

Time = 58.82 (sec) , antiderivative size = 227, normalized size of antiderivative = 2.95

method result size
default \(\frac {\sqrt {2}\, \left (\frac {8 \sqrt {2}}{5 \sin \left (2 x b +2 a \right )^{\frac {5}{2}}}+\frac {4 \sqrt {2}\, \left (6 \sqrt {\sin \left (2 x b +2 a \right )+1}\, \sqrt {-2 \sin \left (2 x b +2 a \right )+2}\, \sqrt {-\sin \left (2 x b +2 a \right )}\, \sin \left (2 x b +2 a \right )^{2} \operatorname {EllipticE}\left (\sqrt {\sin \left (2 x b +2 a \right )+1}, \frac {\sqrt {2}}{2}\right )-3 \sqrt {\sin \left (2 x b +2 a \right )+1}\, \sqrt {-2 \sin \left (2 x b +2 a \right )+2}\, \sqrt {-\sin \left (2 x b +2 a \right )}\, \sin \left (2 x b +2 a \right )^{2} \operatorname {EllipticF}\left (\sqrt {\sin \left (2 x b +2 a \right )+1}, \frac {\sqrt {2}}{2}\right )+6 \sin \left (2 x b +2 a \right )^{4}-4 \sin \left (2 x b +2 a \right )^{2}-2\right )}{5 \sin \left (2 x b +2 a \right )^{\frac {5}{2}} \cos \left (2 x b +2 a \right )}\right )}{32 b}\) \(227\)

[In]

int(sin(b*x+a)^2/sin(2*b*x+2*a)^(7/2),x,method=_RETURNVERBOSE)

[Out]

1/32*2^(1/2)*(8/5*2^(1/2)/sin(2*b*x+2*a)^(5/2)+4/5*2^(1/2)/sin(2*b*x+2*a)^(5/2)*(6*(sin(2*b*x+2*a)+1)^(1/2)*(-
2*sin(2*b*x+2*a)+2)^(1/2)*(-sin(2*b*x+2*a))^(1/2)*sin(2*b*x+2*a)^2*EllipticE((sin(2*b*x+2*a)+1)^(1/2),1/2*2^(1
/2))-3*(sin(2*b*x+2*a)+1)^(1/2)*(-2*sin(2*b*x+2*a)+2)^(1/2)*(-sin(2*b*x+2*a))^(1/2)*sin(2*b*x+2*a)^2*EllipticF
((sin(2*b*x+2*a)+1)^(1/2),1/2*2^(1/2))+6*sin(2*b*x+2*a)^4-4*sin(2*b*x+2*a)^2-2)/cos(2*b*x+2*a))/b

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 212, normalized size of antiderivative = 2.75 \[ \int \frac {\sin ^2(a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx=\frac {-6 i \, \sqrt {2 i} \cos \left (b x + a\right )^{3} E(\arcsin \left (\cos \left (b x + a\right ) + i \, \sin \left (b x + a\right )\right )\,|\,-1) \sin \left (b x + a\right ) + 6 i \, \sqrt {-2 i} \cos \left (b x + a\right )^{3} E(\arcsin \left (\cos \left (b x + a\right ) - i \, \sin \left (b x + a\right )\right )\,|\,-1) \sin \left (b x + a\right ) + 6 i \, \sqrt {2 i} \cos \left (b x + a\right )^{3} F(\arcsin \left (\cos \left (b x + a\right ) + i \, \sin \left (b x + a\right )\right )\,|\,-1) \sin \left (b x + a\right ) - 6 i \, \sqrt {-2 i} \cos \left (b x + a\right )^{3} F(\arcsin \left (\cos \left (b x + a\right ) - i \, \sin \left (b x + a\right )\right )\,|\,-1) \sin \left (b x + a\right ) - \sqrt {2} {\left (12 \, \cos \left (b x + a\right )^{4} - 6 \, \cos \left (b x + a\right )^{2} - 1\right )} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )}}{40 \, b \cos \left (b x + a\right )^{3} \sin \left (b x + a\right )} \]

[In]

integrate(sin(b*x+a)^2/sin(2*b*x+2*a)^(7/2),x, algorithm="fricas")

[Out]

1/40*(-6*I*sqrt(2*I)*cos(b*x + a)^3*elliptic_e(arcsin(cos(b*x + a) + I*sin(b*x + a)), -1)*sin(b*x + a) + 6*I*s
qrt(-2*I)*cos(b*x + a)^3*elliptic_e(arcsin(cos(b*x + a) - I*sin(b*x + a)), -1)*sin(b*x + a) + 6*I*sqrt(2*I)*co
s(b*x + a)^3*elliptic_f(arcsin(cos(b*x + a) + I*sin(b*x + a)), -1)*sin(b*x + a) - 6*I*sqrt(-2*I)*cos(b*x + a)^
3*elliptic_f(arcsin(cos(b*x + a) - I*sin(b*x + a)), -1)*sin(b*x + a) - sqrt(2)*(12*cos(b*x + a)^4 - 6*cos(b*x
+ a)^2 - 1)*sqrt(cos(b*x + a)*sin(b*x + a)))/(b*cos(b*x + a)^3*sin(b*x + a))

Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^2(a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx=\text {Timed out} \]

[In]

integrate(sin(b*x+a)**2/sin(2*b*x+2*a)**(7/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sin ^2(a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx=\int { \frac {\sin \left (b x + a\right )^{2}}{\sin \left (2 \, b x + 2 \, a\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate(sin(b*x+a)^2/sin(2*b*x+2*a)^(7/2),x, algorithm="maxima")

[Out]

integrate(sin(b*x + a)^2/sin(2*b*x + 2*a)^(7/2), x)

Giac [F]

\[ \int \frac {\sin ^2(a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx=\int { \frac {\sin \left (b x + a\right )^{2}}{\sin \left (2 \, b x + 2 \, a\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate(sin(b*x+a)^2/sin(2*b*x+2*a)^(7/2),x, algorithm="giac")

[Out]

integrate(sin(b*x + a)^2/sin(2*b*x + 2*a)^(7/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^2(a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx=\int \frac {{\sin \left (a+b\,x\right )}^2}{{\sin \left (2\,a+2\,b\,x\right )}^{7/2}} \,d x \]

[In]

int(sin(a + b*x)^2/sin(2*a + 2*b*x)^(7/2),x)

[Out]

int(sin(a + b*x)^2/sin(2*a + 2*b*x)^(7/2), x)